

PAT-003-1152004

Seat No. _____

M. Sc. (Electronics) (Sem. II) (CBCS) Examination August / September - 2020

Advance Digital Electronics: Paper - 8
(New Syllabus)

Faculty Code: 003 Subject Code: 1152004

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

1 Answer the following: (Any 7 out of 10)

14

- (1) Name the PLD which has
 - (a) Programmable AND array at the input and a Fixed OR array at the output.
 - (b) Fixed AND array at the input and a Programmable OR array at the output.
- (2) Differentiate between Synchronous and Asynchronous Counters. (2 points each).
- (3) What is a Flip-Flop? Explain.
- (4) Determine the size of PROM required for implementing the following logic circuits.
 - (a) A single digit BCD adder/subtractor with a control input for selection of operation.
 - (b) 16 to 1 multiplexer
- (5) Fill in the blanks:
 - (a) _____ has the highest priority in 8085 interrupts.
 - (b) Microprocessor 8085 has _____ and ____ pin (name) for serial communication.
- (6) Enlist all registers available in 8085.
- (7) With the help of block diagram, Show J K Flip Flop as D type and T type Flip Flop. Write their truth table.
- (8) List the types of Shift Registers.
- (9) Explain working of R S Flip Flop as switch de bouncer.
- (10) Implement Boolean expression $f(A,B,C) = \sum (1,2,4,7)$ using $M \cup X + 4$ to 1.

2 Answer the following: (Any 2 out of 3)

14

(1) Implement the following Boolean expression using PROM.

 $F1 (A,B,C,D) = \Sigma (0,2,5,9,12,13)$

 $F2 (A,B,C,D) = \Sigma (1,3,6,8,10,11)$

F3 (A,B,C,D) = Σ (6,7,8,12,14,15)

- (2) Design a four line to two line priority encoder with active High inputs and outputs, with priority assigned to the higher order data input line.
- (3) Draw the internal architecture of microprocessor 8085. Explain its General purpose registers.
- **3** Answer the following:

14

(1) Identify and explain the output of following circuit.

(2) Design and explain 4 to 16 decoder with two 3 to 8 decoders having an active LOW ENABLE inputs.

OR

3 Answer the following:

14

- (1) Design and explain 4 bit Ring Counter with block diagram and timing waveforms.
- (2) Design and explain Negative edge triggered J K flip- flop with ACTIVE HIGH inputs.

4 Answer the following:

(1) Explain each of the following codes and final result of all used registers.

Memory data 8000 36H 8001 55H 8002 FFH

CODES:

LXI H 8000H

MOV A, M

INX H

MOV B, M

ADD B

INR B

RLC

INX H

MOV M, A

HLT

(2) Design and explain 4 bit ASYNCHRONOUS Binary Counter with logic diagram and necessary waveforms.

5 Answer the following: (Any 2 out of 4)

14

14

- (1) With the help of logic diagram and the truth table, describe the operation of a clocked R S flip flop with active HIGH R & S inputs. (clock is positive level trigger)
- (2) Design mod 12 UP counter using IC 74293 and DOWN counter using IC 74193.
- (3) Write a note on Programmable Logic Devices.
- (4) Design and explain 1 Digit BCD adder circuit using IC 7483.

3